Physics

Semester 1

Weeks 3-4

August 25 – September 5

Monday / Tuesday (8/25 – 26)

- Velocity practice problems
- Motion detector lab

Journal 1.1

- What are my strategies to succeed this school year?
- For each journal, you will need three things:
 - 1) write the date
 - 2) write the prompt (the question)
 - •3) write AT LEAST 4 sentences in response to the prompt.

- T: <u>5C</u> describe and analyze motion in one dimension using equations with the concepts of distance, displacement, speed, velocity, frames of reference, and acceleration
- O: I will be able to demonstrate my understanding of velocity and speed
- D: by completing a lab and a worksheet over the concepts.
- A: velocity, speed, displacement, distance
- Y: What does the slope of a distance vs time graph tell us?

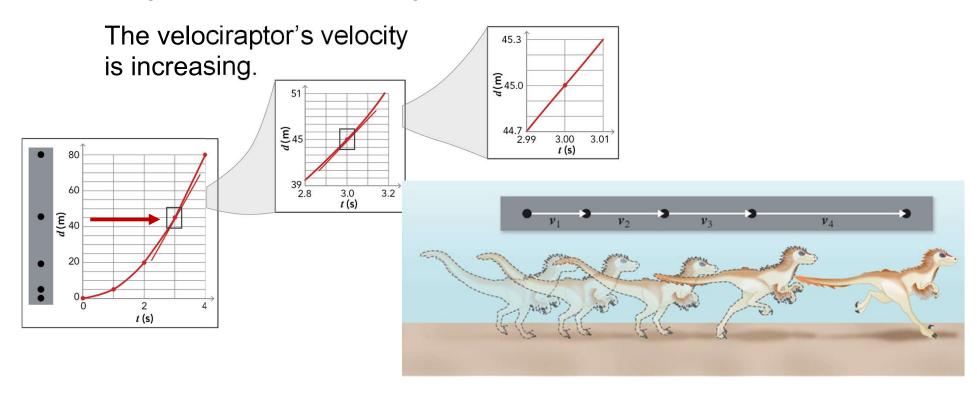
Graphing distance vs time

- Always put the independent variable on the x-axis
- The slope of the line equals the velocity
 - Remember the slope formula ($\Delta y / \Delta x$)
 - Δ (delta) means change. Mathematically it means to subtract

Slope interpretation of distance vs time

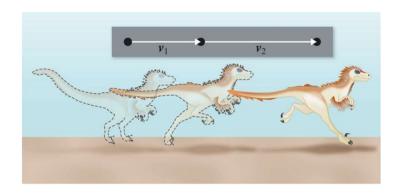
- What is the slope of a horizontal line?
 - What does this mean about velocity
- What is the slope of a vertical line?
 - What does this mean about velocity?
- What does a positive slope look like?
 - What does this mean about velocity?
- What does a negative slope look like?
 - What does this mean about velocity?

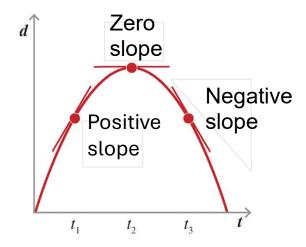
Wednesday / Thursday (8/27 – 28)

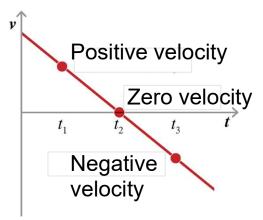

- T: 5C describe and analyze motion in one dimension using equations with the concepts of distance, displacement, speed, velocity, frames of reference, and acceleration
- •O: I will be able to solve problems involving acceleration
- D: by applying the kinematic equations and the concepts we have discussed in class.
- A: acceleration, kinematics
- Y: How do you determine which formula to use?

Acceleration

Instantaneous Velocity


Instantaneous velocity is the average velocity over an infinitesimally small time interval; it is the slope of the tangent line on a position graph.

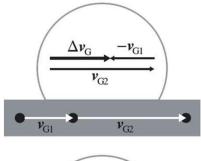


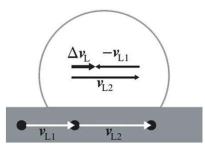

Graphs of Changing Velocity

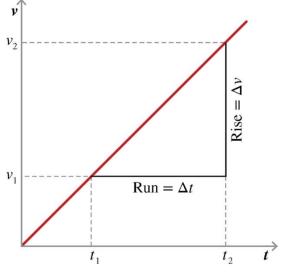
The time derivative of a function is the rate at which the value of the function changes with time, which is the slope of the curve at that point.

Use the head-to-tail method to find Δv , the change in velocity of the velociraptor.

Copyright © Savvas Learning Company LLC. All Rights Reserved. Savvas is not responsible for any modifications made by end users to the content posted in its original format.

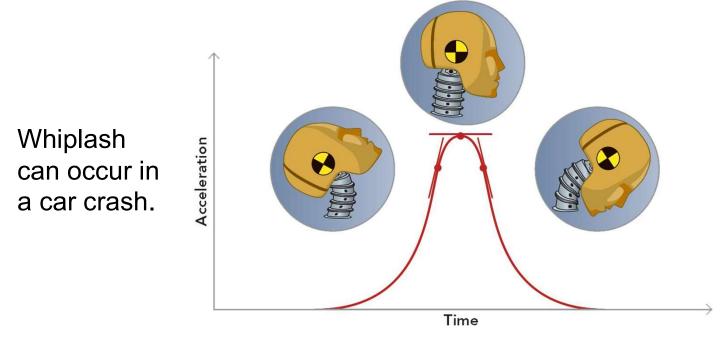

Acceleration


Acceleration is a vector that is the time derivative of velocity.


Use the head-to-tail method and the velocity vectors from a dot diagram to determine the direction of the acceleration.

$$a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

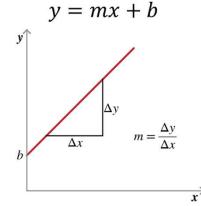
a = acceleration Δv = change in velocity Δt = change in time

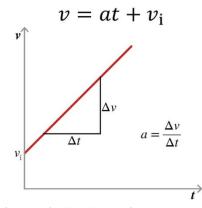


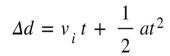
Slope =
$$\frac{\text{Rise}}{\text{Run}} = \frac{\Delta v}{\Delta t}$$

Instantaneous Acceleration

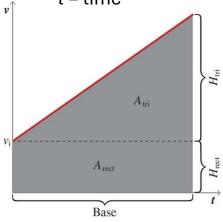
Instantaneous acceleration is the average acceleration over an infinitesimally small time interval. The slope of the tangent at an instant on a velocity vs. time graph is the instantaneous acceleration.

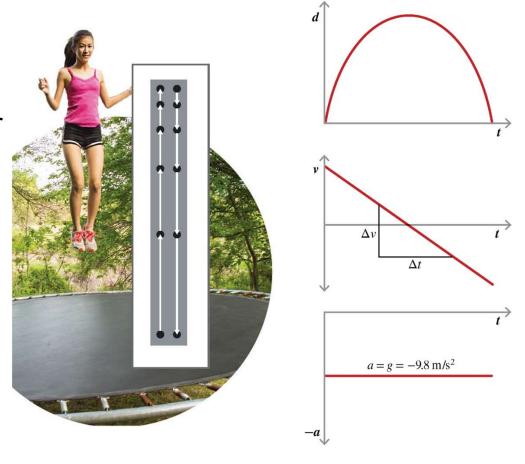



Copyright @ Savvas Learning Company LLC. All Rights Reserved. Savvas is not responsible for any modifications made by end users to the content posted in its original format.


Constant Acceleration

The two equations that describe an object's velocity and displacement are called **equations of motion.**


$$v = v_i + at$$
 $v = velocity$
 $v_i = initial$
 $velocity$
 $a = acceleration$
 $t = time$


 Δd = displacement v_i = initial velocity a = acceleration t = time

Copyright © Savvas Learning Company LLC. All Rights Reserved. Savvas is not responsible for any modifications made by end users to the content posted in its original format.

Acceleration Due to Gravity

A body in free fall experiences a constant acceleration toward the center of Earth called acceleration due to gravity, *g*, which has a constant magnitude of 9.8 m/s² toward the ground.

$$egin{aligned} v &= v_0 + at \ \Delta x &= (rac{v + v_0}{2})t \ \Delta x &= v_0 t + rac{1}{2}at^2 \ v^2 &= v_0^2 + 2a\Delta x \end{aligned}$$

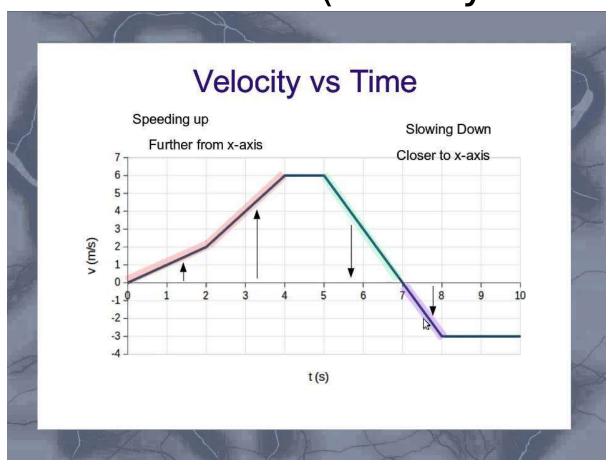
Friday (8/29)

- C-day
- Finish the problems from last class

- •T: <u>5C</u> describe and analyze motion in one dimension using equations with the concepts of distance, displacement, speed, velocity, frames of reference, and acceleration
- O: I will continue to expand my understanding of motion
- D: by working in small groups to finish my assignment(s) from previous classes.
- A: velocity, distance
- Y: What factors affect velocity?

Tuesday / Wednesday (9/2 – 3)

Acceleration and Velocity more practice (word problems)


- •T: <u>5C</u> describe and analyze motion in one dimension using equations with the concepts of distance, displacement, speed, velocity, frames of reference, and acceleration
- O: I will be able to properly set up and solve distance, velocity, and 1-d acceleration problems
- •D: by completing a mixed problem worksheet.
- · A: velocity, distance, acceleration
- Y: How do you determine which formula to use for each word problem?

Thursday / Friday (9/4 – 5)

- Graphing with acceleration
- Explain free fall and up/down free fall

- •T: <u>5C</u> describe and analyze motion in one dimension using equations with the concepts of distance, displacement, speed, velocity, frames of reference, and acceleration
- O: I will be able to describe acceleration from a graphic and mathematical standpoint
- D: by finishing the worksheet from last class, participating in a class discussion and class problems, and completing freefall problems.
- A: freefall, acceleration
- Y: How do we determine whether gravity is positive or

Graphs for Acceleration (velocity vs time)

