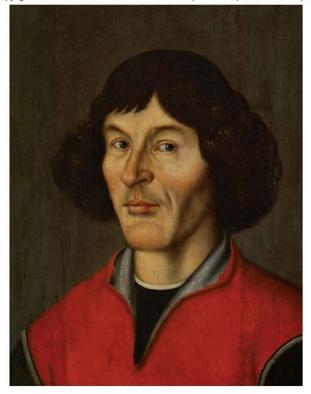
Astronomy

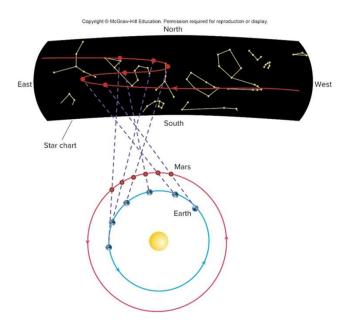
Fall 2025

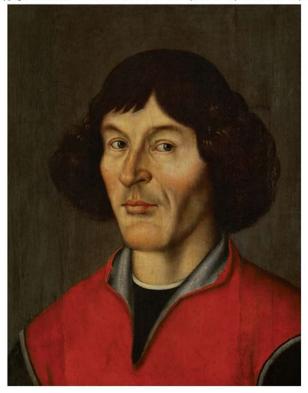
Weeks 7 - 8


Monday / Tuesday (September 22 – 23)

- T:5B research and evaluate the contributions of scientists, including Ptolemy, Copernicus, Tycho Brahe, Kepler, Galileo, and Newton, as astronomy progressed from a geocentric model to a heliocentric model; and
 6D understand the difference between astronomy and astrology, the reasons for their historical conflation, and their eventual separation.
- O: I will be able to compare and contrast the models created by ancient astronomers
- D: by discussing similarities in my groups, completing a Stellarium project, taking notes, and taking a quiz.
- A: Copernicus, wondering stars
- Y: What concepts from ancient astronomers were correct? Which were incorrect?

Astronomy in the Renaissance: Copernicus


- Nicolaus Copernicus (1473 to 1543)
- Could not reconcile centuries of data with Ptolemy's geocentric model.
- Consequently, Copernicus reconsidered Aristarchus's heliocentric model with the Sun at the center of the solar system.


Copernicus's Success

- Heliocentric models
 explain retrograde motion
 as a natural
 consequence of two
 planets (one being Earth)
 passing each other.
- Copernicus could also derive the relative distances of the planets from the Sun, and explain why Venus and Mercury were always close to the Sun.

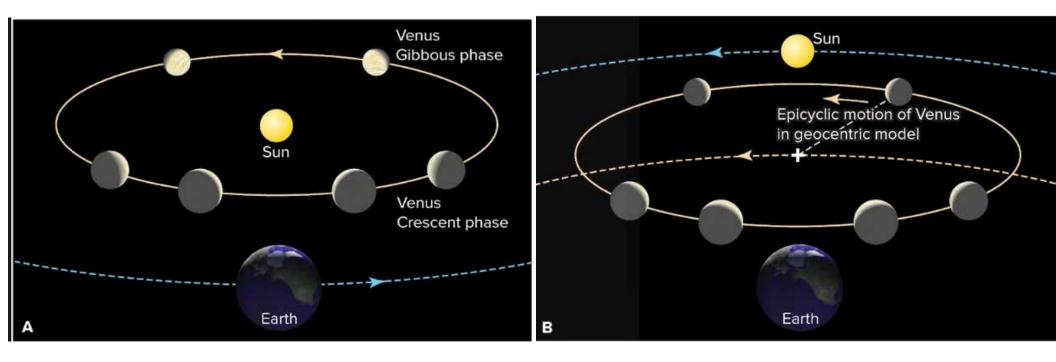
Copernicus's Failure

Copyright @ McGraw-Hill Education. Permission required for reproduction or display.

- However, problems remained:
- Could not predict planet positions any more accurately than the model of Ptolemy.
- Could not explain lack of parallax motion of stars.
- Conflicted with Aristotelian "common sense".

Wednesday / Thursday (September 24 – 25)

Journal 2.1


 What was my grade for the first 6-weeks? Am I happy with it? What will I do this six-weeks as compared to the 1st six-weeks? • T:(5) Science concepts. The student understands how astronomy influenced and advanced civilizations. The student is expected to:

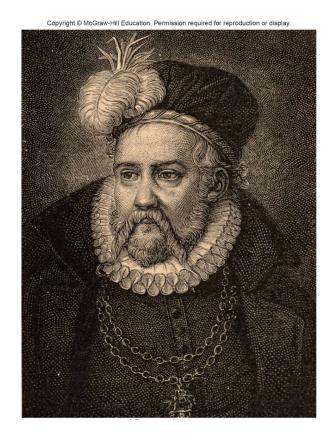
 5B research and evaluate the contributions of scientists, including Ptolemy, Copernicus, Tycho Brahe, Kepler, Galileo, and Newton, as astronomy progressed from a geocentric model to a heliocentric model; and

(6) Science concepts. The student conducts and explains astronomical observations made from the point of reference of Earth. The student is expected to:

- **6D** understand the difference between astronomy and astrology, the reasons for their historical conflation, and their eventual separation.
- O: I will be able to explain the astronomical ideas presented by Galileo
- D: after watching a video, discussing with my peers, completing a Stellarium project, and conducting a close-read.
- A: Galileo, geocentric, heliocentric
- Y: What observations did Galileo use to determine that the Sun was the center of the universe?

According to geographic calculations, what shapes of Venus would we see in a geocentric Universe?
What about in a heliocentric Universe?

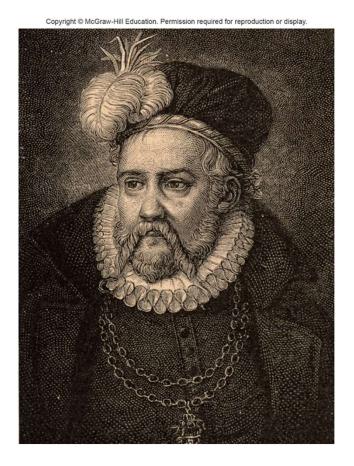
According to Galileo's observations, which model of the Universe does he have evidence for? Is this enough evidence to prove a heliocentric Universe?


Friday (September 26)

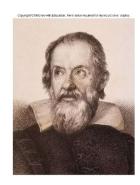
• C-day

Monday / Tuesday (September 29 – 30)

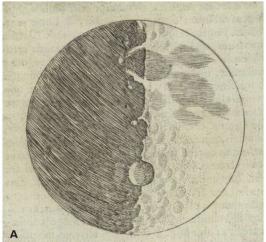
- T:(5) Science concepts. The student understands how astronomy influenced and advanced civilizations. The student is expected to:
- **5B** research and evaluate the contributions of scientists, including Ptolemy, Copernicus, Tycho Brahe, Kepler, Galileo, and Newton, as astronomy progressed from a geocentric model to a heliocentric model; and
- (6) Science concepts. The student conducts and explains astronomical observations made from the point of reference of Earth. The student is expected to:
- **6D** understand the difference between astronomy and astrology, the reasons for their historical conflation, and their eventual separation.
- O: I will be able to explain Kepler's Law of planetary motion
- D: by discussing data with my group, completing a stellarium assignment, taking notes, and reading an Actively Learn.
- A: Kepler's laws
- Y: How do Kepler's laws provide proof that the Sun is the center of our solar system?


Astronomy in the Renaissance: Tycho Brahe

- Tycho Brahe (1546 to 1601)
- Made meticulous measurements of the planets.

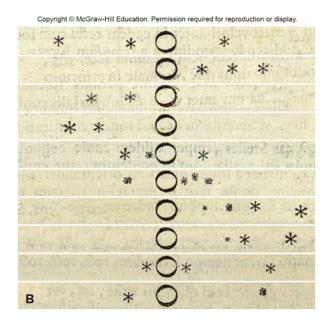

Tycho Brahe's Observations

- Observed supernova and comet
 - suggested that the heavens were both changeable &complex
 - Proposed compromise geocentric model,
 - observed no parallax

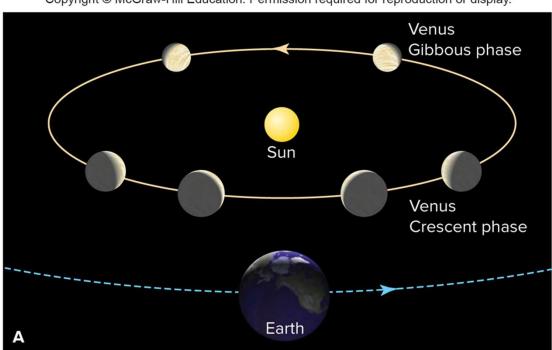


Astronomy in the Renaissance: Galileo

- Galileo (1564 to 1642)
- First person to use the telescope for astronomy
 - The Moon is a ball of rock.



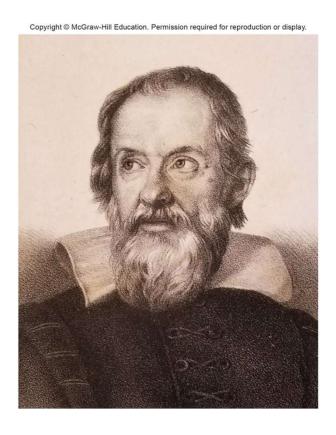
 $\label{eq:copyright} \textbf{ @ McGraw-Hill Education. Permission required for reproduction or display.}$



Galileo's Observations

- The Sun has spots: it's imperfect, changes its appearance, and rotates.
- Jupiter has four moons orbiting it:
- Milky Way uncountable number of stars: Earth-centered universe is too simple.

Evidence for the Heliocentric Model



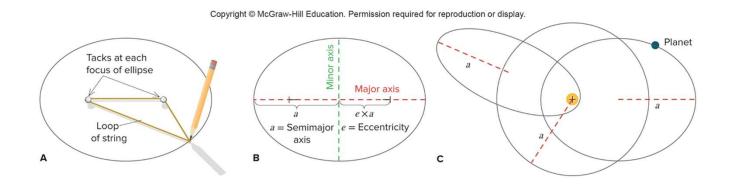
Copyright © McGraw-Hill Education. Permission required for reproduction or display.

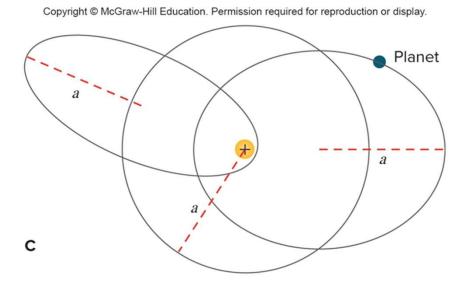
 Venus undergoes full phase cycle: Venus must circle Sun.


One of the Founders of Modern Science

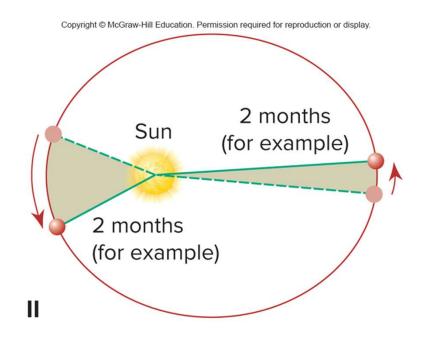
- Credited with originating the experimental method for studying scientific problems.
- Deduced the first correct "laws of motion."
- Was brought before the Inquisition and put under house arrest for the remainder of his life.

Johannes Kepler

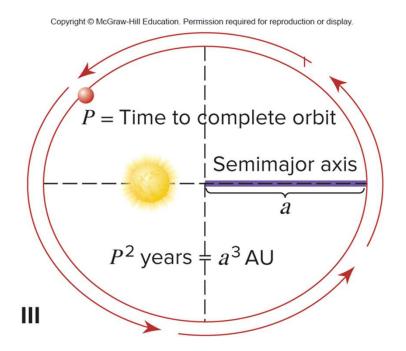

- Johannes Kepler (1571 to 1630)
- Using the very precise Mars data, Kepler showed the orbit to be an ellipse.


Kepler's Success

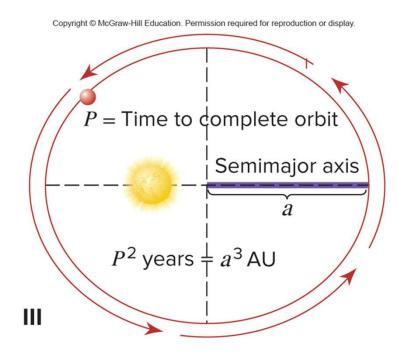
 Planets follow ellipses with the Sun located at one of the two foci


Kepler's 1st Law

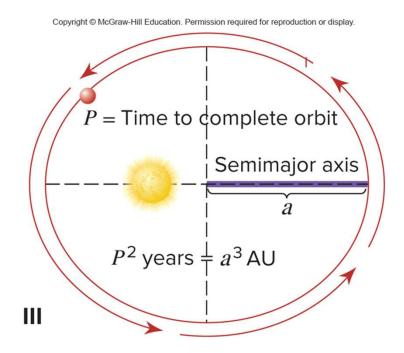
• Planets move in elliptical orbits with the Sun at one *focus* of the ellipse.


Kepler's 2nd Law

- The orbital speed of a planet varies so that a line joining the Sun and the planet will sweep out equal areas in equal time intervals.
- The closer a planet is to the Sun, the faster it moves.


Kepler's 3rd Law

- The amount of time a planet takes to orbit the Sun is related to its orbit's size.
- The square of the period, P, is proportional to the cube of the semimajor axis, a.


Kepler's 3rd Law: Period and Distance

- This law implies that a planet with a larger average distance from the Sun, which is the semimajor axis distance, will take longer to circle the Sun.
- Third law hints at the nature of the force holding the planets in orbit.

Kepler's 3rd Law: Still in Use Today!

 Third law can be used to determine the semimajor axis, a, if the period, P, is known, a measurement that is not difficult to make.

Wednesday / Thursday (October 1 – 2)

Substitute on Thursday

- T:(5) Science concepts. The student understands how astronomy influenced and advanced civilizations. The student is expected to:
- **5B** research and evaluate the contributions of scientists, including Ptolemy, Copernicus, Tycho Brahe, Kepler, Galileo, and Newton, as astronomy progressed from a geocentric model to a heliocentric model; and
- (6) Science concepts. The student conducts and explains astronomical observations made from the point of reference of Earth. The student is expected to:
- **6D** understand the difference between astronomy and astrology, the reasons for their historical conflation, and their eventual separation.
- O: I will be able to explain the planets' orbits according to Kepler
- D: by completing 3 PhET simulations.
- A: Kepler's Laws
- Y: How can the orbits of the planets be proven by Kepler's laws?

Friday (October 3)

- C-day
- Substitute